MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. AISI 317 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while AISI 317 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is AISI 317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
35 to 55
Fatigue Strength, MPa 530
250 to 330
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 630
420 to 470
Tensile Strength: Ultimate (UTS), MPa 1080
580 to 710
Tensile Strength: Yield (Proof), MPa 990
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 300
590
Melting Completion (Liquidus), °C 1610
1400
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 41
21
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 33
4.3
Embodied Energy, MJ/kg 540
59
Embodied Water, L/kg 180
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
210 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
150 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
20 to 25
Strength to Weight: Bending, points 52
20 to 22
Thermal Diffusivity, mm2/s 1.7
4.1
Thermal Shock Resistance, points 79
12 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
18 to 20
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
58 to 68
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0.25 to 0.75
3.0 to 4.0
Nickel (Ni), % 0
11 to 15
Nitrogen (N), % 0 to 0.050
0 to 0.1
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0