MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. C43400 Brass

Titanium 6-5-0.5 belongs to the titanium alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 6.7
3.0 to 49
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
42
Shear Strength, MPa 630
250 to 390
Tensile Strength: Ultimate (UTS), MPa 1080
310 to 690
Tensile Strength: Yield (Proof), MPa 990
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 1610
1020
Melting Onset (Solidus), °C 1560
990
Specific Heat Capacity, J/kg-K 550
380
Thermal Conductivity, W/m-K 4.2
140
Thermal Expansion, µm/m-K 9.4
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
32

Otherwise Unclassified Properties

Base Metal Price, % relative 41
28
Density, g/cm3 4.5
8.6
Embodied Carbon, kg CO2/kg material 33
2.7
Embodied Energy, MJ/kg 540
44
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
57 to 1420
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 67
10 to 22
Strength to Weight: Bending, points 52
12 to 20
Thermal Diffusivity, mm2/s 1.7
41
Thermal Shock Resistance, points 79
11 to 24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
84 to 87
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Molybdenum (Mo), % 0.25 to 0.75
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.19
0
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 85.6 to 90.1
0
Zinc (Zn), % 0
11.4 to 15.6
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.5