MakeItFrom.com
Menu (ESC)

Titanium 6-5-0.5 vs. S82441 Stainless Steel

Titanium 6-5-0.5 belongs to the titanium alloys classification, while S82441 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-5-0.5 and the bottom bar is S82441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 6.7
28
Fatigue Strength, MPa 530
400
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Shear Strength, MPa 630
490
Tensile Strength: Ultimate (UTS), MPa 1080
760
Tensile Strength: Yield (Proof), MPa 990
550

Thermal Properties

Latent Heat of Fusion, J/g 410
290
Maximum Temperature: Mechanical, °C 300
1090
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1380
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 4.2
15
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 41
16
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 33
3.2
Embodied Energy, MJ/kg 540
45
Embodied Water, L/kg 180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 71
190
Resilience: Unit (Modulus of Resilience), kJ/m3 4630
740
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 67
27
Strength to Weight: Bending, points 52
24
Thermal Diffusivity, mm2/s 1.7
3.9
Thermal Shock Resistance, points 79
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.7 to 6.3
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0
0.1 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.2
62.6 to 70.2
Manganese (Mn), % 0
2.5 to 4.0
Molybdenum (Mo), % 0.25 to 0.75
1.0 to 2.0
Nickel (Ni), % 0
3.0 to 4.5
Nitrogen (N), % 0 to 0.050
0.2 to 0.3
Oxygen (O), % 0 to 0.19
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 85.6 to 90.1
0
Zirconium (Zr), % 4.0 to 6.0
0
Residuals, % 0 to 0.4
0