MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. 1080A Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while 1080A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is 1080A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 6.7 to 9.0
2.3 to 34
Fatigue Strength, MPa 590 to 670
18 to 50
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 670 to 800
49 to 81
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
74 to 140
Tensile Strength: Yield (Proof), MPa 1040 to 1230
17 to 120

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
640
Specific Heat Capacity, J/kg-K 540
900
Thermal Conductivity, W/m-K 5.5
230
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
62
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
200

Otherwise Unclassified Properties

Base Metal Price, % relative 40
9.5
Density, g/cm3 4.8
2.7
Embodied Carbon, kg CO2/kg material 29
8.3
Embodied Energy, MJ/kg 470
160
Embodied Water, L/kg 200
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
3.1 to 19
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
50
Strength to Weight: Axial, points 66 to 79
7.6 to 15
Strength to Weight: Bending, points 50 to 57
14 to 22
Thermal Diffusivity, mm2/s 2.1
94
Thermal Shock Resistance, points 75 to 90
3.3 to 6.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
99.8 to 100
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
0 to 0.030
Gallium (Ga), % 0
0 to 0.030
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0
0 to 0.020
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0 to 0.020
Zinc (Zn), % 0
0 to 0.060
Residuals, % 0 to 0.4
0

Comparable Variants