MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. 6018 Aluminum

Titanium 6-6-2 belongs to the titanium alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 6.7 to 9.0
9.0 to 9.1
Fatigue Strength, MPa 590 to 670
85 to 89
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 670 to 800
170 to 180
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
290 to 300
Tensile Strength: Yield (Proof), MPa 1040 to 1230
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 310
160
Melting Completion (Liquidus), °C 1610
640
Melting Onset (Solidus), °C 1560
570
Specific Heat Capacity, J/kg-K 540
890
Thermal Conductivity, W/m-K 5.5
170
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
140

Otherwise Unclassified Properties

Base Metal Price, % relative 40
10
Density, g/cm3 4.8
2.9
Embodied Carbon, kg CO2/kg material 29
8.2
Embodied Energy, MJ/kg 470
150
Embodied Water, L/kg 200
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
24 to 25
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
48
Strength to Weight: Axial, points 66 to 79
28 to 29
Strength to Weight: Bending, points 50 to 57
34 to 35
Thermal Diffusivity, mm2/s 2.1
65
Thermal Shock Resistance, points 75 to 90
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.35 to 1.0
0.15 to 0.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0
0.3 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.5 to 1.2
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.4
0 to 0.15