MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. EN 1.5510 Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while EN 1.5510 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.7 to 9.0
11 to 21
Fatigue Strength, MPa 590 to 670
220 to 330
Poisson's Ratio 0.32
0.29
Reduction in Area, % 17 to 23
62 to 72
Shear Modulus, GPa 44
73
Shear Strength, MPa 670 to 800
310 to 380
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
450 to 1600
Tensile Strength: Yield (Proof), MPa 1040 to 1230
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 310
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 5.5
51
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 40
1.9
Density, g/cm3 4.8
7.8
Embodied Carbon, kg CO2/kg material 29
1.4
Embodied Energy, MJ/kg 470
19
Embodied Water, L/kg 200
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
46 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 66 to 79
16 to 57
Strength to Weight: Bending, points 50 to 57
17 to 39
Thermal Diffusivity, mm2/s 2.1
14
Thermal Shock Resistance, points 75 to 90
13 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.050
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0.35 to 1.0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
97.9 to 99.149
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 5.0 to 6.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0