MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. C90500 Gun Metal

Titanium 6-6-2 belongs to the titanium alloys classification, while C90500 gun metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 6.7 to 9.0
20
Fatigue Strength, MPa 590 to 670
90
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 44
40
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
320
Tensile Strength: Yield (Proof), MPa 1040 to 1230
160

Thermal Properties

Latent Heat of Fusion, J/g 400
190
Maximum Temperature: Mechanical, °C 310
170
Melting Completion (Liquidus), °C 1610
1000
Melting Onset (Solidus), °C 1560
850
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 5.5
75
Thermal Expansion, µm/m-K 9.4
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
11

Otherwise Unclassified Properties

Base Metal Price, % relative 40
35
Density, g/cm3 4.8
8.7
Embodied Carbon, kg CO2/kg material 29
3.6
Embodied Energy, MJ/kg 470
59
Embodied Water, L/kg 200
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
54
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 66 to 79
10
Strength to Weight: Bending, points 50 to 57
12
Thermal Diffusivity, mm2/s 2.1
23
Thermal Shock Resistance, points 75 to 90
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 0.35 to 1.0
86 to 89
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.5
9.0 to 11
Titanium (Ti), % 82.8 to 87.8
0
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0 to 0.4
0 to 0.3