MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. N08330 Stainless Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while N08330 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is N08330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.7 to 9.0
34
Fatigue Strength, MPa 590 to 670
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 670 to 800
360
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
550
Tensile Strength: Yield (Proof), MPa 1040 to 1230
230

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Maximum Temperature: Mechanical, °C 310
1050
Melting Completion (Liquidus), °C 1610
1390
Melting Onset (Solidus), °C 1560
1340
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
12
Thermal Expansion, µm/m-K 9.4
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 40
32
Density, g/cm3 4.8
8.0
Embodied Carbon, kg CO2/kg material 29
5.4
Embodied Energy, MJ/kg 470
77
Embodied Water, L/kg 200
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
24
Strength to Weight: Axial, points 66 to 79
19
Strength to Weight: Bending, points 50 to 57
18
Thermal Diffusivity, mm2/s 2.1
3.1
Thermal Shock Resistance, points 75 to 90
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 0
17 to 20
Copper (Cu), % 0.35 to 1.0
0 to 1.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
38.3 to 48.3
Lead (Pb), % 0
0 to 0.0050
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 0
34 to 37
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.75 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0 to 0.025
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0