MakeItFrom.com
Menu (ESC)

Titanium 6-6-2 vs. S30415 Stainless Steel

Titanium 6-6-2 belongs to the titanium alloys classification, while S30415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-6-2 and the bottom bar is S30415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 6.7 to 9.0
45
Fatigue Strength, MPa 590 to 670
300
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 670 to 800
470
Tensile Strength: Ultimate (UTS), MPa 1140 to 1370
670
Tensile Strength: Yield (Proof), MPa 1040 to 1230
330

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 310
940
Melting Completion (Liquidus), °C 1610
1410
Melting Onset (Solidus), °C 1560
1370
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 5.5
21
Thermal Expansion, µm/m-K 9.4
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 40
15
Density, g/cm3 4.8
7.7
Embodied Carbon, kg CO2/kg material 29
3.1
Embodied Energy, MJ/kg 470
43
Embodied Water, L/kg 200
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 99
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 66 to 79
24
Strength to Weight: Bending, points 50 to 57
22
Thermal Diffusivity, mm2/s 2.1
5.6
Thermal Shock Resistance, points 75 to 90
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.050
0.040 to 0.060
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
18 to 19
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
67.8 to 71.8
Manganese (Mn), % 0
0 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 0
9.0 to 10
Nitrogen (N), % 0 to 0.040
0.12 to 0.18
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.8 to 87.8
0
Residuals, % 0 to 0.4
0