MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 1100A Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 11
4.5 to 34
Fatigue Strength, MPa 530
35 to 74
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
59 to 99
Tensile Strength: Ultimate (UTS), MPa 1020
89 to 170
Tensile Strength: Yield (Proof), MPa 900
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 1700
640
Melting Onset (Solidus), °C 1650
640
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.7
Embodied Carbon, kg CO2/kg material 34
8.2
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
5.9 to 150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 56
9.1 to 17
Strength to Weight: Bending, points 44
16 to 25
Thermal Shock Resistance, points 66
4.0 to 7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
99 to 100
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0.050 to 0.2
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.050
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 1.0
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15