MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 3005 Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
70
Elongation at Break, % 11
1.1 to 16
Fatigue Strength, MPa 530
53 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
84 to 150
Tensile Strength: Ultimate (UTS), MPa 1020
140 to 270
Tensile Strength: Yield (Proof), MPa 900
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
180
Melting Completion (Liquidus), °C 1700
660
Melting Onset (Solidus), °C 1650
640
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.8
Embodied Carbon, kg CO2/kg material 34
8.2
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
49
Strength to Weight: Axial, points 56
14 to 27
Strength to Weight: Bending, points 44
21 to 33
Thermal Shock Resistance, points 66
6.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
95.7 to 98.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0
1.0 to 1.5
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.6
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15