MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 5042 Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 5042 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Elongation at Break, % 11
1.1 to 3.4
Fatigue Strength, MPa 530
97 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
200
Tensile Strength: Ultimate (UTS), MPa 1020
340 to 360
Tensile Strength: Yield (Proof), MPa 900
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
180
Melting Completion (Liquidus), °C 1700
640
Melting Onset (Solidus), °C 1650
570
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.7
Embodied Carbon, kg CO2/kg material 34
8.8
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
550 to 720
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 56
35 to 37
Strength to Weight: Bending, points 44
40 to 42
Thermal Shock Resistance, points 66
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
94.2 to 96.8
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0 to 0.35
Magnesium (Mg), % 0
3.0 to 4.0
Manganese (Mn), % 0
0.2 to 0.5
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.2
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15