MakeItFrom.com
Menu (ESC)

Titanium 6-7 vs. 6061 Aluminum

Titanium 6-7 belongs to the titanium alloys classification, while 6061 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is titanium 6-7 and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
69
Elongation at Break, % 11
3.4 to 20
Fatigue Strength, MPa 530
58 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 45
26
Shear Strength, MPa 610
84 to 210
Tensile Strength: Ultimate (UTS), MPa 1020
130 to 410
Tensile Strength: Yield (Proof), MPa 900
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 300
170
Melting Completion (Liquidus), °C 1700
650
Melting Onset (Solidus), °C 1650
580
Specific Heat Capacity, J/kg-K 520
900
Thermal Expansion, µm/m-K 9.3
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 5.1
2.7
Embodied Carbon, kg CO2/kg material 34
8.3
Embodied Energy, MJ/kg 540
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 3460
42 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 32
50
Strength to Weight: Axial, points 56
13 to 42
Strength to Weight: Bending, points 44
21 to 45
Thermal Shock Resistance, points 66
5.7 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
95.9 to 98.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.040 to 0.35
Copper (Cu), % 0
0.15 to 0.4
Hydrogen (H), % 0 to 0.0090
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Molybdenum (Mo), % 6.5 to 7.5
0
Niobium (Nb), % 6.5 to 7.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.4 to 0.8
Tantalum (Ta), % 0 to 0.5
0
Titanium (Ti), % 84.9 to 88
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15