MakeItFrom.com
Menu (ESC)

Type 2 Magnetic Alloy vs. 360.0 Aluminum

Type 2 magnetic alloy belongs to the iron alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Type 2 magnetic alloy and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 2.0 to 38
2.5
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 510 to 910
300
Tensile Strength: Yield (Proof), MPa 260 to 870
170

Thermal Properties

Latent Heat of Fusion, J/g 270
530
Melting Completion (Liquidus), °C 1420
590
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 4.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 5.9
7.8
Embodied Energy, MJ/kg 81
140
Embodied Water, L/kg 140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 160
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 2010
200
Stiffness to Weight: Axial, points 12
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 17 to 30
32
Strength to Weight: Bending, points 17 to 25
38
Thermal Shock Resistance, points 16 to 29
14

Alloy Composition

Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 0 to 0.3
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
0 to 0.6
Iron (Fe), % 48.2 to 53
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 0.8
0 to 0.35
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 47 to 49
0 to 0.5
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.5
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25