MakeItFrom.com
Menu (ESC)

Type 3 Magnetic Alloy vs. C14520 Copper

Type 3 magnetic alloy belongs to the nickel alloys classification, while C14520 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is Type 3 magnetic alloy and the bottom bar is C14520 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
120
Elongation at Break, % 43
9.0 to 9.6
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 70
43
Shear Strength, MPa 380
170 to 190
Tensile Strength: Ultimate (UTS), MPa 550
290 to 330
Tensile Strength: Yield (Proof), MPa 210
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 910
200
Melting Completion (Liquidus), °C 1370
1080
Melting Onset (Solidus), °C 1320
1050
Specific Heat Capacity, J/kg-K 450
390
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
85
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
85

Otherwise Unclassified Properties

Base Metal Price, % relative 55
33
Density, g/cm3 8.7
8.9
Embodied Carbon, kg CO2/kg material 8.7
2.6
Embodied Energy, MJ/kg 120
42
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240 to 280
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 22
18
Strength to Weight: Axial, points 18
9.0 to 10
Strength to Weight: Bending, points 17
11 to 12
Thermal Shock Resistance, points 18
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 2.0 to 3.0
0
Cobalt (Co), % 0 to 0.5
0
Copper (Cu), % 4.0 to 6.0
99.2 to 99.596
Iron (Fe), % 9.9 to 19
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 75 to 78
0
Phosphorus (P), % 0 to 0.010
0.0040 to 0.020
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Tellurium (Te), % 0
0.4 to 0.7