MakeItFrom.com
Menu (ESC)

C10300 Copper vs. AWS ER90S-B9

C10300 copper belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C10300 copper and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.6 to 50
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Tensile Strength: Ultimate (UTS), MPa 230 to 410
690
Tensile Strength: Yield (Proof), MPa 77 to 400
470

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1080
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
25
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 99
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
7.0
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
37
Embodied Water, L/kg 310
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
25
Strength to Weight: Bending, points 9.4 to 14
22
Thermal Diffusivity, mm2/s 110
6.9
Thermal Shock Resistance, points 8.2 to 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 99.95 to 99.999
0 to 0.2
Iron (Fe), % 0
84.4 to 90.7
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0.0010 to 0.0050
0 to 0.010
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5