MakeItFrom.com
Menu (ESC)

C10400 Copper vs. ASTM A356 Grade 10

C10400 copper belongs to the copper alloys classification, while ASTM A356 grade 10 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is ASTM A356 grade 10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.3 to 50
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Tensile Strength: Ultimate (UTS), MPa 230 to 410
670
Tensile Strength: Yield (Proof), MPa 77 to 400
430

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
460
Melting Completion (Liquidus), °C 1080
1470
Melting Onset (Solidus), °C 1080
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 32
3.9
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.8
Embodied Energy, MJ/kg 42
23
Embodied Water, L/kg 340
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
130
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
480
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
24
Strength to Weight: Bending, points 9.4 to 14
22
Thermal Diffusivity, mm2/s 110
11
Thermal Shock Resistance, points 8.2 to 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
2.0 to 2.8
Copper (Cu), % 99.9 to 99.973
0
Iron (Fe), % 0
94.4 to 96.6
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.2
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.6
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0