MakeItFrom.com
Menu (ESC)

C10400 Copper vs. EN 1.3563 Steel

C10400 copper belongs to the copper alloys classification, while EN 1.3563 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is EN 1.3563 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 230 to 410
690 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
43
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 32
2.5
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 42
20
Embodied Water, L/kg 340
52

Common Calculations

Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
24 to 65
Strength to Weight: Bending, points 9.4 to 14
22 to 43
Thermal Diffusivity, mm2/s 110
12
Thermal Shock Resistance, points 8.2 to 15
20 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0
0.4 to 0.46
Chromium (Cr), % 0
0.9 to 1.2
Copper (Cu), % 99.9 to 99.973
0 to 0.3
Iron (Fe), % 0
96.8 to 98.4
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Oxygen (O), % 0 to 0.0010
0 to 0.0020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0