MakeItFrom.com
Menu (ESC)

C10400 Copper vs. EN 1.4369 Stainless Steel

C10400 copper belongs to the copper alloys classification, while EN 1.4369 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is EN 1.4369 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 50
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 160 to 240
580
Tensile Strength: Ultimate (UTS), MPa 230 to 410
850
Tensile Strength: Yield (Proof), MPa 77 to 400
390

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
940
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1080
1360
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 32
14
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
43
Embodied Water, L/kg 340
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
280
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
380
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
31
Strength to Weight: Bending, points 9.4 to 14
26
Thermal Diffusivity, mm2/s 110
4.0
Thermal Shock Resistance, points 8.2 to 15
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.070 to 0.15
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 99.9 to 99.973
0
Iron (Fe), % 0
63 to 70.2
Manganese (Mn), % 0
5.0 to 7.5
Nickel (Ni), % 0
6.5 to 8.5
Nitrogen (N), % 0
0.2 to 0.3
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.050
0