MakeItFrom.com
Menu (ESC)

C10400 Copper vs. N06985 Nickel

C10400 copper belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.3 to 50
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 160 to 240
480
Tensile Strength: Ultimate (UTS), MPa 230 to 410
690
Tensile Strength: Yield (Proof), MPa 77 to 400
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1350
Melting Onset (Solidus), °C 1080
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 390
10
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 32
55
Density, g/cm3 9.0
8.4
Embodied Carbon, kg CO2/kg material 2.6
8.8
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 340
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
250
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.2 to 13
23
Strength to Weight: Bending, points 9.4 to 14
21
Thermal Diffusivity, mm2/s 110
2.6
Thermal Shock Resistance, points 8.2 to 15
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 99.9 to 99.973
1.5 to 2.5
Iron (Fe), % 0
18 to 21
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Residuals, % 0 to 0.050
0