MakeItFrom.com
Menu (ESC)

C10400 Copper vs. S44535 Stainless Steel

C10400 copper belongs to the copper alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 50
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Shear Strength, MPa 160 to 240
290
Tensile Strength: Ultimate (UTS), MPa 230 to 410
450
Tensile Strength: Yield (Proof), MPa 77 to 400
290

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 1080
1430
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
21
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 100
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
11
Density, g/cm3 9.0
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.4
Embodied Energy, MJ/kg 42
34
Embodied Water, L/kg 340
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
110
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
200
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
16
Strength to Weight: Bending, points 9.4 to 14
17
Thermal Diffusivity, mm2/s 110
5.6
Thermal Shock Resistance, points 8.2 to 15
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 99.9 to 99.973
0 to 0.5
Iron (Fe), % 0
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0.3 to 0.8
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.5
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Residuals, % 0 to 0.050
0