MakeItFrom.com
Menu (ESC)

C10400 Copper vs. S45000 Stainless Steel

C10400 copper belongs to the copper alloys classification, while S45000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C10400 copper and the bottom bar is S45000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.3 to 50
6.8 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 160 to 240
590 to 830
Tensile Strength: Ultimate (UTS), MPa 230 to 410
980 to 1410
Tensile Strength: Yield (Proof), MPa 77 to 400
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
840
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1080
1390
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 390
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
13
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 340
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.5 to 91
94 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
850 to 4400
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 7.2 to 13
35 to 50
Strength to Weight: Bending, points 9.4 to 14
28 to 36
Thermal Diffusivity, mm2/s 110
4.5
Thermal Shock Resistance, points 8.2 to 15
33 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 99.9 to 99.973
1.3 to 1.8
Iron (Fe), % 0
72.1 to 79.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
5.0 to 7.0
Oxygen (O), % 0 to 0.0010
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.027 to 0.050
0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.050
0