MakeItFrom.com
Menu (ESC)

C10500 Copper vs. CC766S Brass

Both C10500 copper and CC766S brass are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C10500 copper and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 2.8 to 51
28
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220 to 400
500
Tensile Strength: Yield (Proof), MPa 75 to 400
190

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 1080
840
Melting Onset (Solidus), °C 1080
800
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
32
Electrical Conductivity: Equal Weight (Specific), % IACS 100
36

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
110
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
180
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.8 to 12
17
Strength to Weight: Bending, points 9.1 to 14
18
Thermal Diffusivity, mm2/s 110
28
Thermal Shock Resistance, points 7.8 to 14
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 99.89 to 99.966
58 to 64
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 2.0
Oxygen (O), % 0 to 0.0010
0
Silicon (Si), % 0
0 to 0.6
Silver (Ag), % 0.034 to 0.060
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
29.5 to 41.7
Residuals, % 0 to 0.050
0