MakeItFrom.com
Menu (ESC)

C10800 Copper vs. EN 2.4669 Nickel

C10800 copper belongs to the copper alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C10800 copper and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 4.0 to 50
16
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 150 to 200
680
Tensile Strength: Ultimate (UTS), MPa 220 to 380
1110
Tensile Strength: Yield (Proof), MPa 75 to 370
720

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
960
Melting Completion (Liquidus), °C 1080
1380
Melting Onset (Solidus), °C 1080
1330
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 350
12
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 92
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
60
Density, g/cm3 9.0
8.4
Embodied Carbon, kg CO2/kg material 2.6
10
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 310
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 88
160
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 600
1380
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8 to 12
37
Strength to Weight: Bending, points 9.1 to 13
28
Thermal Diffusivity, mm2/s 100
3.1
Thermal Shock Resistance, points 7.8 to 13
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 99.95 to 99.995
0 to 0.5
Iron (Fe), % 0
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0.0050 to 0.012
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8