MakeItFrom.com
Menu (ESC)

C11000 Copper vs. C51900 Bronze

Both C11000 copper and C51900 bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C11000 copper and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.5 to 50
14 to 29
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 35 to 63
45 to 76
Shear Modulus, GPa 43
42
Shear Strength, MPa 150 to 230
320 to 370
Tensile Strength: Ultimate (UTS), MPa 220 to 410
380 to 620
Tensile Strength: Yield (Proof), MPa 69 to 390
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1040
Melting Onset (Solidus), °C 1070
930
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 390
66
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
14
Electrical Conductivity: Equal Weight (Specific), % IACS 100
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 91
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 640
680 to 1450
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 13
12 to 19
Strength to Weight: Bending, points 9.0 to 14
13 to 18
Thermal Diffusivity, mm2/s 110
20
Thermal Shock Resistance, points 8.0 to 15
14 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.9 to 100
91.7 to 95
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.1
0 to 0.5

Comparable Variants