MakeItFrom.com
Menu (ESC)

C11000 Copper vs. C92300 Bronze

Both C11000 copper and C92300 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11000 copper and the bottom bar is C92300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.5 to 50
19
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220 to 410
300
Tensile Strength: Yield (Proof), MPa 69 to 390
140

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1080
1000
Melting Onset (Solidus), °C 1070
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 390
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
12
Electrical Conductivity: Equal Weight (Specific), % IACS 100
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
56
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1 to 91
47
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 640
86
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8 to 13
9.5
Strength to Weight: Bending, points 9.0 to 14
11
Thermal Diffusivity, mm2/s 110
23
Thermal Shock Resistance, points 8.0 to 15
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 99.9 to 100
85 to 89
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
7.5 to 9.0
Zinc (Zn), % 0
2.5 to 5.0
Residuals, % 0 to 0.1
0 to 0.7