MakeItFrom.com
Menu (ESC)

C11100 Copper vs. ASTM A202 Steel

C11100 copper belongs to the copper alloys classification, while ASTM A202 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is ASTM A202 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5
17 to 18
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 230
360 to 410
Tensile Strength: Ultimate (UTS), MPa 460
590 to 670
Tensile Strength: Yield (Proof), MPa 420
350 to 360

Thermal Properties

Latent Heat of Fusion, J/g 210
260
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
52
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.1
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
93 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 750
330 to 350
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14
21 to 24
Strength to Weight: Bending, points 15
20 to 22
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 16
17 to 20