MakeItFrom.com
Menu (ESC)

C11100 Copper vs. EN 1.5508 Steel

C11100 copper belongs to the copper alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5
11 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 230
300 to 360
Tensile Strength: Ultimate (UTS), MPa 460
420 to 1460
Tensile Strength: Yield (Proof), MPa 420
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
51
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 750
260 to 640
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14
15 to 52
Strength to Weight: Bending, points 15
16 to 36
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 16
12 to 43

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 99.9 to 100
0 to 0.25
Iron (Fe), % 0
97.9 to 99.199
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.1
0