MakeItFrom.com
Menu (ESC)

C11100 Copper vs. SAE-AISI 1524 Steel

C11100 copper belongs to the copper alloys classification, while SAE-AISI 1524 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is SAE-AISI 1524 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5
14 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 230
360 to 390
Tensile Strength: Ultimate (UTS), MPa 460
570 to 650
Tensile Strength: Yield (Proof), MPa 420
320 to 540

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
52
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.9
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 750
270 to 760
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14
20 to 23
Strength to Weight: Bending, points 15
19 to 21
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 16
18 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.19 to 0.25
Copper (Cu), % 99.9 to 100
0
Iron (Fe), % 0
98 to 98.5
Manganese (Mn), % 0
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.1
0