MakeItFrom.com
Menu (ESC)

C11100 Copper vs. SAE-AISI 1552 Steel

C11100 copper belongs to the copper alloys classification, while SAE-AISI 1552 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is SAE-AISI 1552 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 1.5
11 to 14
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
72
Shear Strength, MPa 230
460 to 510
Tensile Strength: Ultimate (UTS), MPa 460
760 to 840
Tensile Strength: Yield (Proof), MPa 420
460 to 650

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1070
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
51
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 9.0
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
81 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 750
560 to 1130
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14
27 to 30
Strength to Weight: Bending, points 15
24 to 25
Thermal Diffusivity, mm2/s 110
14
Thermal Shock Resistance, points 16
26 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.47 to 0.55
Copper (Cu), % 99.9 to 100
0
Iron (Fe), % 0
97.9 to 98.3
Manganese (Mn), % 0
1.2 to 1.5
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Residuals, % 0 to 0.1
0