MakeItFrom.com
Menu (ESC)

C11100 Copper vs. Titanium 4-4-2

C11100 copper belongs to the copper alloys classification, while titanium 4-4-2 belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is titanium 4-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.5
10
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
42
Shear Strength, MPa 230
690 to 750
Tensile Strength: Ultimate (UTS), MPa 460
1150 to 1250
Tensile Strength: Yield (Proof), MPa 420
1030 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 210
410
Maximum Temperature: Mechanical, °C 200
310
Melting Completion (Liquidus), °C 1080
1610
Melting Onset (Solidus), °C 1070
1560
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 390
6.7
Thermal Expansion, µm/m-K 17
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 31
39
Density, g/cm3 9.0
4.7
Embodied Carbon, kg CO2/kg material 2.6
30
Embodied Energy, MJ/kg 41
480
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 750
4700 to 5160
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
34
Strength to Weight: Axial, points 14
68 to 74
Strength to Weight: Bending, points 15
52 to 55
Thermal Diffusivity, mm2/s 110
2.6
Thermal Shock Resistance, points 16
86 to 93

Alloy Composition

Aluminum (Al), % 0
3.0 to 5.0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 99.9 to 100
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 0
0.3 to 0.7
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
85.8 to 92.2
Residuals, % 0
0 to 0.4