MakeItFrom.com
Menu (ESC)

C11100 Copper vs. N08028 Stainless Steel

C11100 copper belongs to the copper alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11100 copper and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 230
400
Tensile Strength: Ultimate (UTS), MPa 460
570
Tensile Strength: Yield (Proof), MPa 420
240

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1070
1370
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
12
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
6.4
Embodied Energy, MJ/kg 41
89
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.6
210
Resilience: Unit (Modulus of Resilience), kJ/m3 750
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 14
19
Strength to Weight: Bending, points 15
19
Thermal Diffusivity, mm2/s 110
3.2
Thermal Shock Resistance, points 16
12

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 99.9 to 100
0.6 to 1.4
Iron (Fe), % 0
29 to 40.4
Manganese (Mn), % 0
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.1
0