MakeItFrom.com
Menu (ESC)

C11400 Copper vs. N08135 Stainless Steel

C11400 copper belongs to the copper alloys classification, while N08135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C11400 copper and the bottom bar is N08135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 2.8 to 51
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 150 to 210
400
Tensile Strength: Ultimate (UTS), MPa 220 to 400
570
Tensile Strength: Yield (Proof), MPa 75 to 400
240

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1390
Specific Heat Capacity, J/kg-K 390
460
Thermal Expansion, µm/m-K 17
16

Otherwise Unclassified Properties

Base Metal Price, % relative 32
39
Density, g/cm3 9.0
8.2
Embodied Carbon, kg CO2/kg material 2.6
6.8
Embodied Energy, MJ/kg 42
94
Embodied Water, L/kg 350
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
210
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 12
19
Strength to Weight: Bending, points 9.1 to 14
19
Thermal Shock Resistance, points 7.8 to 14
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 99.84 to 99.966
0 to 0.7
Iron (Fe), % 0
30.2 to 42.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
33 to 38
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.75
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8
Residuals, % 0 to 0.1
0