MakeItFrom.com
Menu (ESC)

C11400 Copper vs. S34565 Stainless Steel

C11400 copper belongs to the copper alloys classification, while S34565 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C11400 copper and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 2.8 to 51
39
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 10 to 62
88
Shear Modulus, GPa 43
80
Shear Strength, MPa 150 to 210
610
Tensile Strength: Ultimate (UTS), MPa 220 to 400
900
Tensile Strength: Yield (Proof), MPa 75 to 400
470

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 32
28
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
5.3
Embodied Energy, MJ/kg 42
73
Embodied Water, L/kg 350
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 90
300
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 680
540
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 12
32
Strength to Weight: Bending, points 9.1 to 14
26
Thermal Diffusivity, mm2/s 110
3.2
Thermal Shock Resistance, points 7.8 to 14
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 99.84 to 99.966
0
Iron (Fe), % 0
43.2 to 51.6
Manganese (Mn), % 0
5.0 to 7.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Silver (Ag), % 0.034 to 0.060
0
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.1
0