MakeItFrom.com
Menu (ESC)

C12000 Copper vs. EN 1.8958 Steel

C12000 copper belongs to the copper alloys classification, while EN 1.8958 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C12000 copper and the bottom bar is EN 1.8958 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 2.8 to 50
19
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 160 to 240
270
Tensile Strength: Ultimate (UTS), MPa 230 to 410
430
Tensile Strength: Yield (Proof), MPa 77 to 400
220

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1080
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 390
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 98
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 31
2.4
Density, g/cm3 9.0
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 41
19
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 91
70
Resilience: Unit (Modulus of Resilience), kJ/m3 25 to 690
130
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 7.2 to 13
15
Strength to Weight: Bending, points 9.4 to 14
16
Thermal Diffusivity, mm2/s 110
12
Thermal Shock Resistance, points 8.2 to 15
13

Alloy Composition

Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0.35 to 0.85
Copper (Cu), % 99.9 to 99.996
0.2 to 0.6
Iron (Fe), % 0
96.5 to 99.3
Manganese (Mn), % 0
0.15 to 0.7
Nickel (Ni), % 0
0 to 0.7
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0.0040 to 0.012
0 to 0.040
Silicon (Si), % 0
0 to 0.45
Sulfur (S), % 0
0 to 0.040