MakeItFrom.com
Menu (ESC)

C12500 Copper vs. EN 2.4879 Cast Nickel

C12500 copper belongs to the copper alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C12500 copper and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 1.5 to 50
3.4
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Tensile Strength: Ultimate (UTS), MPa 220 to 420
490
Tensile Strength: Yield (Proof), MPa 75 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1070
1400
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 350
11
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 31
55
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.6
8.3
Embodied Energy, MJ/kg 41
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6 to 88
14
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 660
180
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.9 to 13
16
Strength to Weight: Bending, points 9.1 to 14
16
Thermal Diffusivity, mm2/s 100
2.8
Thermal Shock Resistance, points 7.8 to 15
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0
27 to 30
Copper (Cu), % 99.88 to 100
0
Iron (Fe), % 0
9.4 to 20.7
Lead (Pb), % 0 to 0.0040
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0 to 0.025
0
Tungsten (W), % 0
4.0 to 6.0
Residuals, % 0 to 0.3
0