MakeItFrom.com
Menu (ESC)

C12900 Copper vs. CC494K Bronze

Both C12900 copper and CC494K bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C12900 copper and the bottom bar is CC494K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 2.8 to 50
7.6
Poisson's Ratio 0.34
0.35
Shear Modulus, GPa 43
39
Tensile Strength: Ultimate (UTS), MPa 220 to 420
210
Tensile Strength: Yield (Proof), MPa 75 to 380
94

Thermal Properties

Latent Heat of Fusion, J/g 210
180
Maximum Temperature: Mechanical, °C 200
160
Melting Completion (Liquidus), °C 1080
970
Melting Onset (Solidus), °C 1030
890
Specific Heat Capacity, J/kg-K 390
360
Thermal Conductivity, W/m-K 380
63
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
16
Electrical Conductivity: Equal Weight (Specific), % IACS 98
16

Otherwise Unclassified Properties

Base Metal Price, % relative 32
31
Density, g/cm3 9.0
9.1
Embodied Carbon, kg CO2/kg material 2.6
3.1
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 330
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 88
13
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 640
43
Stiffness to Weight: Axial, points 7.2
6.4
Stiffness to Weight: Bending, points 18
17
Strength to Weight: Axial, points 6.8 to 13
6.5
Strength to Weight: Bending, points 9.1 to 14
8.8
Thermal Diffusivity, mm2/s 110
19
Thermal Shock Resistance, points 7.8 to 15
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0 to 0.0030
0 to 0.5
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
78 to 87
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.0040
8.0 to 10
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.050
0 to 2.0
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.010
Silver (Ag), % 0 to 0.054
0
Sulfur (S), % 0
0 to 0.1
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
0 to 2.0