MakeItFrom.com
Menu (ESC)

C14180 Copper vs. C19800 Copper

Both C14180 copper and C19800 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14180 copper and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
9.0 to 12
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 210
430 to 550
Tensile Strength: Yield (Proof), MPa 130
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1070
Melting Onset (Solidus), °C 1080
1050
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 370
260
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
43
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 69
770 to 1320
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.5
14 to 17
Strength to Weight: Bending, points 8.8
14 to 17
Thermal Diffusivity, mm2/s 110
75
Thermal Shock Resistance, points 7.4
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0
Copper (Cu), % 99.9 to 100
95.7 to 99.47
Iron (Fe), % 0
0.020 to 0.5
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.1 to 1.0
Phosphorus (P), % 0 to 0.075
0.010 to 0.1
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2