MakeItFrom.com
Menu (ESC)

C14180 Copper vs. C82600 Copper

Both C14180 copper and C82600 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14180 copper and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 210
570 to 1140
Tensile Strength: Yield (Proof), MPa 130
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1080
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 370
130
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 41
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 69
430 to 4690
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.5
18 to 36
Strength to Weight: Bending, points 8.8
17 to 28
Thermal Diffusivity, mm2/s 110
37
Thermal Shock Resistance, points 7.4
19 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.010
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 99.9 to 100
94.9 to 97.2
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.020
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.075
0
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5