MakeItFrom.com
Menu (ESC)

C14200 Copper vs. ACI-ASTM CF3M Steel

C14200 copper belongs to the copper alloys classification, while ACI-ASTM CF3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is ACI-ASTM CF3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 45
55
Fatigue Strength, MPa 76 to 130
270
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Tensile Strength: Ultimate (UTS), MPa 220 to 370
520
Tensile Strength: Yield (Proof), MPa 75 to 340
260

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1440
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
16
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 31
19
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
3.8
Embodied Energy, MJ/kg 41
53
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
240
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
170
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 11
18
Strength to Weight: Bending, points 9.1 to 13
18
Thermal Diffusivity, mm2/s 56
4.3
Thermal Shock Resistance, points 7.9 to 13
12

Alloy Composition

Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 21
Copper (Cu), % 99.4 to 99.835
0
Iron (Fe), % 0
59.9 to 72
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 13
Phosphorus (P), % 0.015 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040