MakeItFrom.com
Menu (ESC)

C14200 Copper vs. AISI 440B Stainless Steel

C14200 copper belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 45
3.0 to 18
Fatigue Strength, MPa 76 to 130
260 to 850
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 150 to 200
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 220 to 370
740 to 1930
Tensile Strength: Yield (Proof), MPa 75 to 340
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 1080
1480
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 190
23
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.0
Density, g/cm3 8.9
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 41
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
57 to 110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 11
27 to 70
Strength to Weight: Bending, points 9.1 to 13
24 to 45
Thermal Diffusivity, mm2/s 56
6.1
Thermal Shock Resistance, points 7.9 to 13
27 to 70

Alloy Composition

Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.4 to 99.835
0
Iron (Fe), % 0
78.2 to 83.3
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0.015 to 0.040
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015