MakeItFrom.com
Menu (ESC)

C14200 Copper vs. EN 1.4877 Stainless Steel

C14200 copper belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 8.0 to 45
36
Fatigue Strength, MPa 76 to 130
170
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 150 to 200
420
Tensile Strength: Ultimate (UTS), MPa 220 to 370
630
Tensile Strength: Yield (Proof), MPa 75 to 340
200

Thermal Properties

Latent Heat of Fusion, J/g 210
310
Maximum Temperature: Mechanical, °C 200
1150
Melting Completion (Liquidus), °C 1080
1400
Melting Onset (Solidus), °C 1030
1360
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
12
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 45
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 31
37
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 2.6
6.2
Embodied Energy, MJ/kg 41
89
Embodied Water, L/kg 310
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
180
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 11
22
Strength to Weight: Bending, points 9.1 to 13
20
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 7.9 to 13
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 99.4 to 99.835
0
Iron (Fe), % 0
36.4 to 42.3
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.015 to 0.040
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010