MakeItFrom.com
Menu (ESC)

C14200 Copper vs. EN 1.6554 Steel

C14200 copper belongs to the copper alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14200 copper and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 8.0 to 45
17 to 21
Fatigue Strength, MPa 76 to 130
380 to 520
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Tensile Strength: Ultimate (UTS), MPa 220 to 370
780 to 930
Tensile Strength: Yield (Proof), MPa 75 to 340
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 1080
1460
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 190
40
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 45
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 45
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 31
3.4
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.7
Embodied Energy, MJ/kg 41
22
Embodied Water, L/kg 310
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29 to 83
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 24 to 500
810 to 1650
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 6.8 to 11
27 to 33
Strength to Weight: Bending, points 9.1 to 13
24 to 27
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 7.9 to 13
23 to 27

Alloy Composition

Arsenic (As), % 0.15 to 0.5
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 99.4 to 99.835
0 to 0.3
Iron (Fe), % 0
94.6 to 97.3
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0.015 to 0.040
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030

Comparable Variants