MakeItFrom.com
Menu (ESC)

C14500 Copper vs. ASTM A182 Grade F6b

C14500 copper belongs to the copper alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C14500 copper and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 12 to 50
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Shear Strength, MPa 150 to 190
530
Tensile Strength: Ultimate (UTS), MPa 220 to 330
850
Tensile Strength: Yield (Proof), MPa 69 to 260
710

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
750
Melting Completion (Liquidus), °C 1080
1450
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 360
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 95
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 33
8.0
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.2
Embodied Energy, MJ/kg 42
30
Embodied Water, L/kg 310
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 85
140
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 300
1280
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 6.8 to 10
30
Strength to Weight: Bending, points 9.1 to 12
26
Thermal Diffusivity, mm2/s 100
6.7
Thermal Shock Resistance, points 8.0 to 12
31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 99.2 to 99.596
0 to 0.5
Iron (Fe), % 0
81.2 to 87.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0.0040 to 0.012
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tellurium (Te), % 0.4 to 0.7
0