MakeItFrom.com
Menu (ESC)

C14500 Copper vs. N06985 Nickel

C14500 copper belongs to the copper alloys classification, while N06985 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C14500 copper and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 12 to 50
45
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
80
Shear Strength, MPa 150 to 190
480
Tensile Strength: Ultimate (UTS), MPa 220 to 330
690
Tensile Strength: Yield (Proof), MPa 69 to 260
260

Thermal Properties

Latent Heat of Fusion, J/g 210
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 1080
1350
Melting Onset (Solidus), °C 1050
1260
Specific Heat Capacity, J/kg-K 390
450
Thermal Conductivity, W/m-K 360
10
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 94
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 95
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
55
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 2.6
8.8
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 85
250
Resilience: Unit (Modulus of Resilience), kJ/m3 21 to 300
160
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 6.8 to 10
23
Strength to Weight: Bending, points 9.1 to 12
21
Thermal Diffusivity, mm2/s 100
2.6
Thermal Shock Resistance, points 8.0 to 12
16

Alloy Composition

Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 99.2 to 99.596
1.5 to 2.5
Iron (Fe), % 0
18 to 21
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0.0040 to 0.012
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0
Tungsten (W), % 0
0 to 1.5