MakeItFrom.com
Menu (ESC)

C14510 Copper vs. 2017A Aluminum

C14510 copper belongs to the copper alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C14510 copper and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
71
Elongation at Break, % 9.1 to 9.6
2.2 to 14
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
27
Shear Strength, MPa 180 to 190
120 to 270
Tensile Strength: Ultimate (UTS), MPa 300 to 320
200 to 460
Tensile Strength: Yield (Proof), MPa 230 to 250
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 210
390
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
650
Melting Onset (Solidus), °C 1050
510
Specific Heat Capacity, J/kg-K 390
880
Thermal Conductivity, W/m-K 360
150
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.9
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.2
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 310
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
90 to 570
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
46
Strength to Weight: Axial, points 9.2 to 10
19 to 42
Strength to Weight: Bending, points 11 to 12
26 to 44
Thermal Diffusivity, mm2/s 100
56
Thermal Shock Resistance, points 11 to 12
8.9 to 20

Alloy Composition

Aluminum (Al), % 0
91.3 to 95.5
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 99.15 to 99.69
3.5 to 4.5
Iron (Fe), % 0
0 to 0.7
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Phosphorus (P), % 0.010 to 0.030
0
Silicon (Si), % 0
0.2 to 0.8
Tellurium (Te), % 0.3 to 0.7
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15