MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C70400 Copper-nickel

Both C14510 copper and C70400 copper-nickel are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
45
Tensile Strength: Ultimate (UTS), MPa 300 to 320
300 to 310
Tensile Strength: Yield (Proof), MPa 230 to 250
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 1080
1120
Melting Onset (Solidus), °C 1050
1060
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
64
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 33
32
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.0
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
38 to 220
Stiffness to Weight: Axial, points 7.2
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.2 to 10
9.3 to 9.8
Strength to Weight: Bending, points 11 to 12
11 to 12
Thermal Diffusivity, mm2/s 100
18
Thermal Shock Resistance, points 11 to 12
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Copper (Cu), % 99.15 to 99.69
89.8 to 93.6
Iron (Fe), % 0
1.3 to 1.7
Lead (Pb), % 0 to 0.050
0 to 0.050
Manganese (Mn), % 0
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Phosphorus (P), % 0.010 to 0.030
0
Tellurium (Te), % 0.3 to 0.7
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5