MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C82600 Copper

Both C14510 copper and C82600 copper are copper alloys. They have a very high 96% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C82600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 9.1 to 9.6
1.0 to 20
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
46
Tensile Strength: Ultimate (UTS), MPa 300 to 320
570 to 1140
Tensile Strength: Yield (Proof), MPa 230 to 250
320 to 1070

Thermal Properties

Latent Heat of Fusion, J/g 210
240
Maximum Temperature: Mechanical, °C 200
300
Melting Completion (Liquidus), °C 1080
950
Melting Onset (Solidus), °C 1050
860
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
130
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
11
Embodied Energy, MJ/kg 42
180
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
11 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
430 to 4690
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.2 to 10
18 to 36
Strength to Weight: Bending, points 11 to 12
17 to 28
Thermal Diffusivity, mm2/s 100
37
Thermal Shock Resistance, points 11 to 12
19 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.3 to 2.6
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.35 to 0.65
Copper (Cu), % 99.15 to 99.69
94.9 to 97.2
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0.010 to 0.030
0
Silicon (Si), % 0
0.2 to 0.35
Tellurium (Te), % 0.3 to 0.7
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5