MakeItFrom.com
Menu (ESC)

C14510 Copper vs. C90200 Bronze

Both C14510 copper and C90200 bronze are copper alloys. They have a moderately high 93% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C14510 copper and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 9.1 to 9.6
30
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 300 to 320
260
Tensile Strength: Yield (Proof), MPa 230 to 250
110

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1050
Melting Onset (Solidus), °C 1050
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 360
62
Thermal Expansion, µm/m-K 17
18

Otherwise Unclassified Properties

Base Metal Price, % relative 33
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 42
53
Embodied Water, L/kg 310
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 29
63
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 280
55
Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 9.2 to 10
8.3
Strength to Weight: Bending, points 11 to 12
10
Thermal Diffusivity, mm2/s 100
19
Thermal Shock Resistance, points 11 to 12
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 99.15 to 99.69
91 to 94
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0 to 0.050
0 to 0.3
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0.010 to 0.030
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tellurium (Te), % 0.3 to 0.7
0
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6