MakeItFrom.com
Menu (ESC)

C14520 Copper vs. AISI 301 Stainless Steel

C14520 copper belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C14520 copper and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 9.0 to 9.6
7.4 to 46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 170 to 190
410 to 860
Tensile Strength: Ultimate (UTS), MPa 290 to 330
590 to 1460
Tensile Strength: Yield (Proof), MPa 230 to 250
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 200
840
Melting Completion (Liquidus), °C 1080
1420
Melting Onset (Solidus), °C 1050
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 320
16
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 85
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 85
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 29
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 280
130 to 2970
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.0 to 10
21 to 52
Strength to Weight: Bending, points 11 to 12
20 to 37
Thermal Diffusivity, mm2/s 94
4.2
Thermal Shock Resistance, points 10 to 12
12 to 31

Alloy Composition

Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 99.2 to 99.596
0
Iron (Fe), % 0
70.7 to 78
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.0040 to 0.020
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tellurium (Te), % 0.4 to 0.7
0